Novel learning from demonstration approach for repetitive teleoperation tasks
Published:
Abstract
While teleoperation provides a possibility for a robot to operate at extreme conditions instead of a human, teleoperating a robot still demands a heavy mental workload from a human operator. Learning from demonstrations can reduce the human operator’s burden by learning repetitive teleoperation tasks. However, one of challenging issues is that demonstrations via teleoperation are less consistent compared to other modalities of human demonstrations. In order to solve this problem, we propose a learning scheme based on Dynamic Movement Primitives (DMPs) which can handle less consistent, asynchronized and incomplete demonstrations. In particular we proposed a new Expectation Maximization (EM) algorithm which can synchronize and encode demonstrations with temporal and spatial variances, different initial and final conditions and partial executions. The proposed algorithm is tested and validated with three different experiments of a pegin-hole task conducted on 3-Degree of freedom (DOF) masterslave teleoperation system.